A Natural Gradient Algorithm for the Solution of Lyapunov Equations Based on the Geodesic Distance

نویسندگان

  • Xiaomin Duan
  • Huafei Sun
  • Z. N. ZHANG
چکیده

A new framework based on the curved Riemannian manifold is proposed to calculate the numerical solution of the Lyapunov matrix equation by using a natural gradient descent algorithm and taking the geodesic distance as the objective function. Moreover, a gradient descent algorithm based on the classical Euclidean distance is provided to compare with this natural gradient descent algorithm. Furthermore, the behaviors of two proposed algorithms and the conventional modified conjugate gradient algorithm are compared and demonstrated by two simulation examples. By comparison, it is shown that the convergence speed of the natural gradient descent algorithm is faster than both of the gradient descent algorithm and the conventional modified conjugate gradient algorithm in solving the Lyapunov equation. Mathematics subject classification: 65F10, 53B21, 90C26, 93C05.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal integrated passive/active design of the suspension system using iteration on the Lyapunov equations

In this paper, an iterative technique is proposed to solve linear integrated active/passive design problems. The optimality of active and passive parts leads to the nonlinear algebraic Riccati equation due to the active parameters and some associated additional Lyapunov equations due to the passive parameters. Rather than the solution of the nonlinear algebraic Riccati equation, it is proposed ...

متن کامل

An accelerated gradient based iterative algorithm for solving systems of coupled generalized Sylvester-transpose matrix equations

‎In this paper‎, ‎an accelerated gradient based iterative algorithm for solving systems of coupled generalized Sylvester-transpose matrix equations is proposed‎. ‎The convergence analysis of the algorithm is investigated‎. ‎We show that the proposed algorithm converges to the exact solution for any initial value under certain assumptions‎. ‎Finally‎, ‎some numerical examples are given to demons...

متن کامل

A Semi-analytical Solution for Flexural Vibration of Micro Beams Based on the Strain Gradient Theory

In this paper, the flexural free vibrations of three dimensional micro beams are investigated based on strain gradient theory. The most general form of the strain gradient theory which contains five higher-order material constants has been applied to the micro beam to take the small-scale effects into account. Having considered the Euler-Bernoulli beam model, governing equations of motion are w...

متن کامل

Designing stable neural identifier based on Lyapunov method

The stability of learning rate in neural network identifiers and controllers is one of the challenging issues which attracts great interest from researchers of neural networks. This paper suggests adaptive gradient descent algorithm with stable learning laws for modified dynamic neural network (MDNN) and studies the stability of this algorithm. Also, stable learning algorithm for parameters of ...

متن کامل

Utilizing a new feed-back fuzzy neural network for solving a system of fuzzy equations

This paper intends to offer a new iterative method based on articial neural networks for finding solution of a fuzzy equations system. Our proposed fuzzied neural network is a ve-layer feedback neural network that corresponding connection weights to output layer are fuzzy numbers. This architecture of articial neural networks, can get a real input vector and calculates its corresponding fuzzy o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013